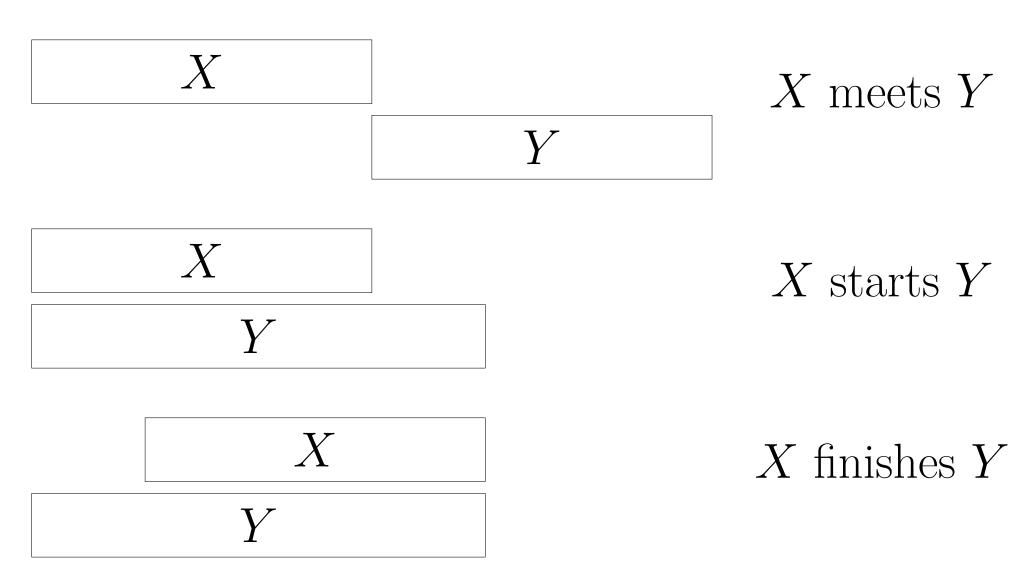
Forward-Sea

Motivations

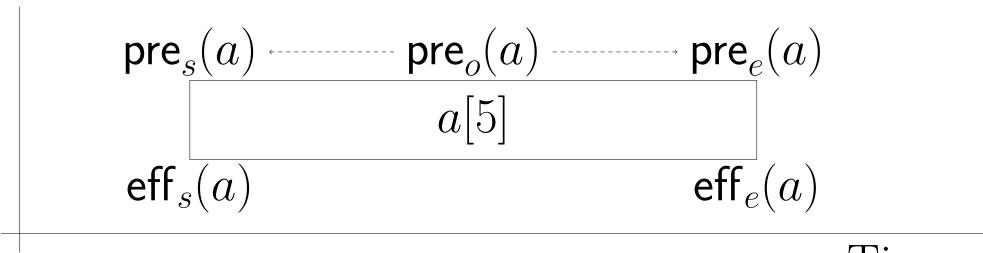
1. Many situations in the real-world involve **simul**taneous events.



2. PDDL 2.1 induces temporal gaps [1]:

- State-of-the-art planners using PDDL do not solve problems with simultaneous events.
- Potentially, more decision points.

3. Allen's Interval Algebra (AIA) [2], a domain that requires simultaneous events.

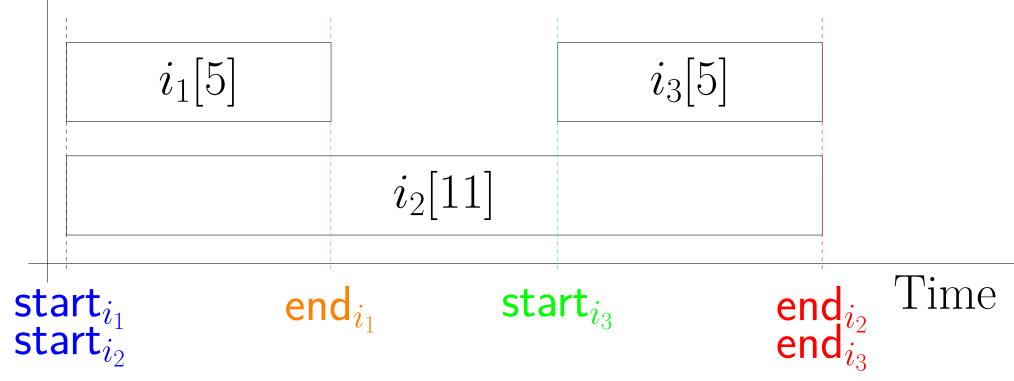

Proposed Approach

1. Compile the temporal problem into a classical problem.

Solve the classical problem using the Fast 2. Downward planner + STNs to check temporal consistency.

Temporal Planning

A temporal planning **problem** is a tuple P = $\langle F, A, I, G \rangle$.

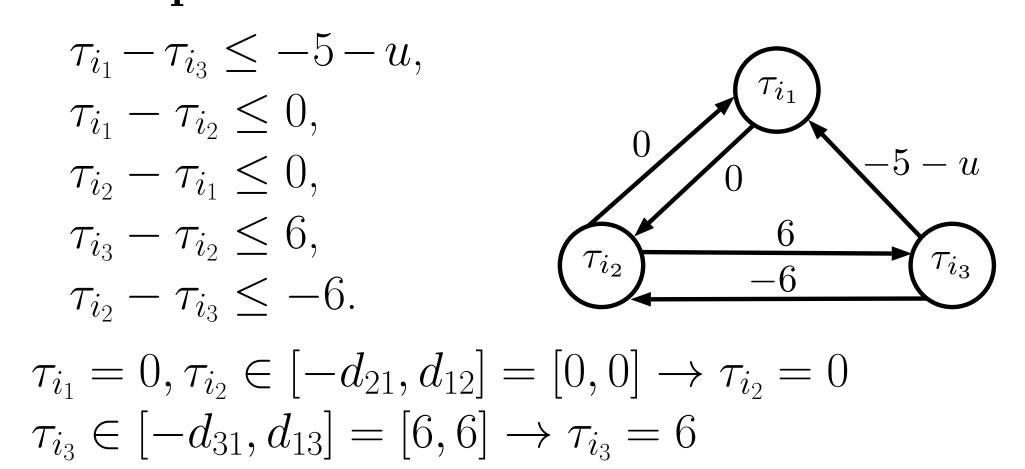

Time

A temporal **plan** is a list of time-action pairs. The quality of a plan is given by its **makespan**.

arch Te	mpor	al Pl	anni
Daniel Furelos-	Blanco ¹ , A	Inders Joi	nsson ¹ , H
Universitat Pompe	eu Fabra	² Nuance C	ommunicat

Simultaneous Events

A temporal action a can be defined in terms of two events: start_{*a*} and end_{*a*}.


• Given an individual event e, no effect of e can be mentioned by another event simultaneous with e[3].

Simple Temporal Networks (STN)

They are used to represent **temporal constraints** on time variables using a directed graph:

- Nodes = time variable τ_i .
- Edges (τ_i, τ_j) with label c = constraints $\tau_j - \tau_i \leq c.$

Example

Results

	TPSHE	TP(2)	TP(3)	TP(4)	STP(2)	STP(3)	STP(4)	POPF2	YAHSP3-MT	ITSAT
AIA[25]	3/3	6.5/8	7.5/9	8.5/10	17.17/22	19.51/24	23.5/25	10/10	3/3	3/3
CUSHING[20]	0/0	0/0	4.07/20	4.93/ 20	0/0	3.31/14	2.28/5	$\mathbf{20/20}$	0/0	0/0
Driverlog[20]	14.78 / 15	0.93/3	1.08/4	0.91/3	0/0	0/0	0/0	0/0	2.31/4	1/1
$\mathbf{DLS}[20]$	9.37/11	10/10	7.7/9	8.06/9	3.78/4	3.9/4	3.49/4	7/7	0/0	16.18/19
FLOORTILE[20]	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	4.93/5	19.7 / 20
MapAnalyser[20]	$] \ 17.38/20$	13.08/20	12.34/20	12.02/19	9.81/17	10.09/16	7.69/12	0/0	1/1	0/0
Matchcellar[20]	15.72/20	15.71/20	15.71/20	15.71/20	15.71/ 20	15.71/ 20	15.71/ 20	$\mathbf{20/20}$	0/0	18.91/19
$\operatorname{Parking}[20]$	6.73/20	5.79/17	5.67/17	5.33/16	1.79/6	1.93/6	1.93/6	12/13	$\mathbf{16.84/20}$	0.96/6
RTAM[20]	${\bf 16/16}$	2.45/6	2.73/6	2.79/6	0/0	0/0	0/0	0/0	0/0	0/0
SATELLITE[20]	16.63/18	4.97/13	5.04/13	4.67/12	0/0	0/0	0/0	2.92/3	13.82/ 20	1.68/7
$\mathbf{STORAGE}[20]$	4.92/ 9	0/0	0/0	0/0	0/0	0/0	0/0	0/0	3.91/ 9	9 / 9
$\mathrm{TMS}[20]$	0.06/9	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	16 / 16
Turn&Open[20]	15.53 / 19	5.05/10	5.03/10	5.19/10	0/0	0/0	0/0	7.31/8	0/0	5.88/6

ing with Simultaneous Events

Héctor Palacios² and Sergio Jiménez³

tions

³Universitat Politècnica de València

The STP Planner

Extension of the TP planner [2]: • Add STNs to Fast Downward. • Bound K on the number of active actions. • Problems with fixed durations and no duration dependent effects. Each joint event is divided in **3 phases**: 1 End phase: active actions are scheduled to end. • Event phase: simultaneous events take place. **3** Start phase: check that pre_o of active actions are satisfied. endphase) finish_a

setevent $dostart_a^c$ setend eventphase doend^c setstart launch_a startphase reset f

Figure 1:Interaction between the different actions introduced by the STP planner in the different phases.

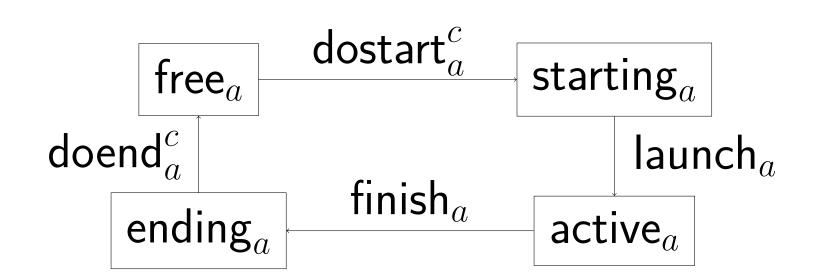


Figure 2: Fluents that are enabled each time an action in the compilation is executed.

them.

	Sof
	htt
	Em

Conclusions

• Method that returns sound temporal plans if used in a forward-search planner maintaining STNs.

• Good performance in a domain requiring

simultaneous events.

• Not competitive in combinatorially challenging domains requiring simpler forms of concurrency.

Future work: Analyze problems before solving

References

[1] Jussi Rintanen.

Models of Action Concurrency in Temporal Planning. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015., pages 1659–1665, 2015.

[2] Sergio Jiménez, Anders Jonsson, and Héctor Palacios. Temporal Planning With Required Concurrency Using Classical Planning.

In Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling, *ICAPS 2015.*, pages 129–137, 2015.

[3] Maria Fox and Derek Long. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. J. Artif. Intell. Res. (JAIR), 20:61–124, 2003.

Acknowledgements

This work has been partially funded by the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502).

Contact Information

tware:

tps://github.com/aig-upf/temporal-planning nail: daniel.furelos@upf.edu

