

Solving Concurrent Multiagent Planning using Classical Planning

Daniel Furelos-Blanco and Anders Jonsson

Universitat Pompeu Fabra

June 26, 2018

Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

・ロッ ・同 ・ ・ ヨッ ・

Introduction	Background	Compilation	Experiments	Conclusions
Motivation				

Lot of progress in multiagent planning since CoDMAP-15.

• Limitation: benchmark domains can be solved using sequential plans.

Many applications **require** agents to act in parallel, like RoboCup Soccer or RoboCup Rescue.

Daniel Furelos-Blanco and Anders Jonsson Solving Concurrent Multiagent Planning using Classical Planning Universitat Pompeu Fabra

Proposed approach

Solve multiagent planning problems that involve concurrency by translating them into classical planning.

Concurrency expressed using concurrency constraints which model when

- 1 two actions **must** occur in parallel, or
- 2 two actions **cannot** occur in parallel.

Daniel Eurelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

< ロ > < 同 > < 回 > < 回 >

Concurrent Multiagent Planning - Definition

• A classical planning problem is defined as

$$\Pi = \langle F, A, I, G \rangle$$

where

- F is a set of fluents,
- A is a set of atomic actions,
- $I \subseteq F$ is an initial state, and $G \subseteq F$ is a goal condition.
- A concurrent multiagent planning problem (CMAP) is a tuple

$$\Pi = \left\langle N, F, \left\{ A^i \right\}_{i=1}^n, I, G \right\rangle$$

where $N = \{1, \ldots, n\}$ is the agent set, and A^i is the action set of agent $i \in N$.

Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

イロト イポト イヨト イヨト

- Each action is a joint/concurrent action: a combination of atomic actions simultaneously performed.
- Given a concurrent action $a = (a^1, \ldots, a^k)$, its precondition and effects are defined as

$$\operatorname{pre}(a) = \bigcup_{j=1}^k \operatorname{pre}(a^j), \ \operatorname{eff}(s,a) = \bigcup_{j=1}^k \operatorname{eff}(s,a^j)$$

 Constraints are imposed on atomic actions to ensure joint actions are well-defined.

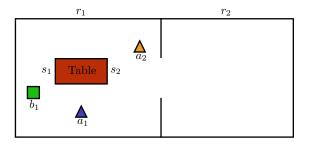
Daniel Furelos-Blanco and Anders Jonsson Solving Concurrent Multiagent Planning using Classical Planning Universitat Pompeu Fabra

Concurrent Multiagent Planning - Concurrency Constraints

- Formulation in [Boutilier and Brafman, 2001] (later extended in [Kovacs, 2012]) uses actions as **fluents**:
 - **Positive:** action a^1 has a^2 as precondition.
 - **Negative:** action a^1 has $\neg a^2$ as precondition.
- **Effects** of an action a^1 can be conditioned to the simultaneous execution of another action a^2 .
- Implicit negative concurrency constraint:
 - Each agent contributes **at most once** to the joint action.

Daniel Furelos-Blanco and Anders Jonsson

Universitat Pompeu Fabra


・ロッ ・同 ・ ・ ヨッ ・

< 17 ▶

Concurrent Multiagent Planning - Example

TABLEMOVER [Boutilier and Brafman, 2001]:

- Two agents must move blocks between rooms.
- Put blocks on a table, carry the table *together* to another room, and tip the table to make the blocks fall down.

Daniel Furelos-Blanco and Anders Jonsson

Universitat Pompeu Fabra

Compilation

Concurrent Multiagent Planning - Example

```
(:action lift-side
 :agent ?a - agent
 :parameters (?s - side)
 :precondition (and
  (at-side ?a ?s)
  (down ?s)
  (handempty ?a)
  (forall
   (?a2 - agent ?s2 - side)
   (not(lower-side ?a2 ?s2))
:effect (and (not (down ?s))
  (up ?s)
  (lifting ?a ?s)
  (not (handempty ?a ?s))
  . . .
```

```
(forall
 (?b - block ?r - room ?s2 -
     side)
 (when
  (and (inroom Table ?r)
   (on-table ?b)
   (down ?s2)
   (forall (?a2 - agent)
   (not (lift-side ?a2 ?s2))
  (and (on-floor ?b)
   (inroom ?b ?r)
   (not (on-table ?b))
)))

    A B > A B >
```

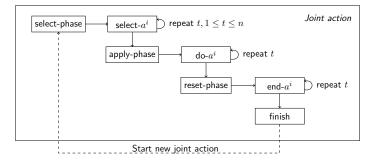
Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

Compilation from Multiagent to Classical Planning (I)

- Transform a CMAP $\Pi = \langle N, F, \{A^i\}_{i=1}^n, I, G \rangle$ into a classical planning problem $\Pi' = \langle F', A', I', G' \rangle$.
- Sound and complete transformation:
 - Adds new fluents and actions that allow to select and apply joint actions while respecting concurrency constraints.
- Divide simulation of a joint action in three different phases:
 - **Action selection:** check preconditions of constituent atomic actions.
 - **2** Action application: apply effects of constituent atomic actions.
 - **3 Resetting:** reset auxiliary fluents.


Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

< ロ > < 同 > < 回 > < 回 >

Compilation from Multiagent to Classical Planning (II)

The resulting number of actions is **polynomial**, not exponential:

$$|A'| = 3\sum_{i \in N} |A^i| + 4.$$

Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

・ロッ ・同 ・ ・ ヨッ ・

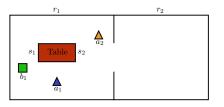
Compilation from Multiagent to Classical Planning (III)

Extension: joint actions with bounded size C.

- At most C agents can act at a time.
- Purpose: reduce branching factor.
- The number of actions is still polynomial:

$$|A'| = (2C+1) \sum_{i \in N} |A^i| + 4.$$

Daniel Furelos-Blanco and Anders Jonsson


Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

・ロッ ・同 ・ ・ ヨッ ・

Compilation from Multiagent to Classical Planning (IV)

Example

Multiagent plan

```
1 (to-table a1 r1 s2)(pickup-floor a2 b1 r1)
2 (putdown-table a2 b1 r1)
3 (to-table a2 r1 s1)
4 (lift-side a1 s2)(lift-side a2 s1)
5 (move-table a1 r1 r2 s2)(move-table a2 r1 r2 s1)
6 (lower-side a1 s2)
```

Classical plan (1st joint action)

```
1 (select-phase )
2 (select-to-table al r1 s2)
3 (select-pickup-floor a2 bl r1)
4 (apply-phase )
5 (do-pickup-floor a2 bl r1)
6 (do-to-table al r1 s2)
7 (reset-phase )
8 (end-to-table al r1 s2)
9 (end-pickup-floor a2 bl r1)
10 (finish )
```

Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

Introduction	Background	Compilation	Experiments	Conclusions
Experiment	S			

Tests on two sets of domains:

1 CoDMAP-15 domains (do not require concurrency).

2 Domains that require concurrency:

- TABLEMOVER [Boutilier and Brafman, 2001].
- MAZE [Crosby et al., 2014].
- BOXPUSHING [Brafman and Zoran, 2014].
- Workshop.

Test three **variants** of the compilation + Fast-Downward:

- Unbounded (∞) .
- Joint action size ≤ 2 (C = 2).
- Joint action size \leq 4 (C = 4).

Daniel Furelos-Blanco and Anders Jonsson

< ロ > < 同 > < 回 > < 回 >

Experiments - CoDMAP-15 domains (I)

- Used to show that our algorithm is complete. However, they do not require concurrency (can be sequentially solved).
 - Use Fast-Downward (FD) for comparison.
- They do not specify negative concurrency constraints (incompatible actions).
 - Add explicit negative concurrency constraints to avoid invalid plans \rightarrow Complexity to find a plan increases!

(日) (同) (三) (

Daniel Furelos-Blanco and Anders Jonsson

Compilation

A B > A B >

Experiments - CoDMAP-15 domains (II)

Domain	#		Cove	erage			Time (s.) Plan length				# Actions						
		2	4	∞	FD	2	4	∞	FD	2	4	∞	FD	2	4	∞	FD
Blocksworld	20	7	2	4	20	759.5	-	-	0.2	32.1	-	-	32.8	6848	12323	4110	1270
Depot	20	13	10	9	17	202.9	246.4	223.9	58.3	30.6	15.7	14.9	44.0	10100	18176	6061	2007
Driverlog	20	18	17	18	20	67.3	58.8	73.7	26.1	21.1	20.5	25.2	35.6	38416	69145	23051	7386
Elevators08	20	9	8	10	20	13.8	12.5	9.5	0.2	31.0	30.3	36.4	65.1	10779	19399	6469	2155
Logistics00	20	20	20	20	20	1.9	2.9	212.1	0.0	30.3	28.0	30.1	50.2	1781	3202	1070	318
Rovers	20	20	20	19	20	45.2	75.2	20.9	0.1	46.5	47.4	42.9	56.8	18314	32962	10990	2609
SATELLITES	20	19	17	19	20	82.8	128.0	32.2	1.0	32.6	35.5	34.2	55.9	45106	81188	27065	8122
Sokoban	20	0	0	0	18	-	-	-	32.3	-	-	-	54.1	3319	5970	1993	663
TAXI	20	20	20	20	20	1.3	2.6	0.7	0.0	14.8	14.7	14.7	18.7	544	975	328	108
WIRELESS	20	2	2	2	4	-	-	-	-	-	-	-	-	15644	28156	9388	3128
WOODWORKING08	20	14	8	4	20	290.0	256.0	-	0.9	22.4	11.4	-	46.1	17406	31327	10445	3447
Zenotravel	20	16	16	18	20	87.2	125.6	164.8	1.5	23.6	24.1	34.2	46.9	67586	121652	40553	13502
Total	240	158	140	143	219												

- Lower coverage and slower than FD.
- Solutions are always shorter (FD does not compress plans).

Daniel Furelos-Blanco and Anders Jonsson

Experiments - Required Concurrency Domains (I)

- TABLEMOVER Move blocks between rooms using a table.
 - The table must be moved simultaneously.
 - The blocks on the table fall if only one side is lifted.
- MAZE Move between two cells in a grid using:
 - Doors: traversed only by one agent at a time.
 - Bridges: can be traversed by multiple agents at once.
 - Boat: used by two or more agents at once (same direction).

Daniel Furelos-Blanco and Anders Jonsson

Experiments - Required Concurrency Domains (II)

- BOXPUSHING Push boxes between two locations in a grid.
 - A small box requires 1 agent to push.
 - A medium box requires 2 agents to push.
 - A large box requires 3 agents to push.
- WORKSHOP Inventory pallets in a high-security facility.
 - Open door = press switch + turn key.
 - Inventory a pallet = lift pallet + examine pallet.

Daniel Furelos-Blanco and Anders Jonsson

Universitat Pompeu Fabra

• • • • • • • • • • • • •

Experiments - Required Concurrency Domains (III)

Compare our approach with CJR [Crosby et al., 2014]:

- Compilation to classical planning.
- Concurrency constraints in the form of affordances on subsets of objects.
- Limitations:
 - Concurrency constraints are not as expressive → Conditional effects on simultaneous actions are not supported.
 - Effects are applied immediately for atomic actions → Some joint actions cannot be simulated.

< ロ > < 同 > < 回 > < 回 >

Experiments - Required Concurrency Domains (IV)

Domain	#		Cov	erage			Time	e (s.)			Plan I	ength			# A	ctions	
		2	4	∞	CJR	2	4	∞	CJR	2	4	∞	CJR	2	4	∞	CJR
Maze	20	13	8	6	11	351.9	435.2	144.4	192.8	47.2	22.0	11.7	77.3	41723	69368	27900	156886
a = 10	10	8	6	5	7	243.6	564.8	169.1	225.5	48.3	25.0	12.2	79.6	39909	67417	26155	119374
a = 15	10	5	2	1	4	525.2	-	-	-	45.4	-	-	-	43989	71807	30080	194397
TABLEMOVER	24	15	12	15	-	263.3	336.5	341.0	-	58.7	59.0	61.5	-	7487	13127	4667	-
a = 2	12	10	10	11	-	103.8	226.4	214.6	-	63.5	62.0	64.5	-	3450	6154	2098	-
a = 4	12	5	2	4	-	558.2	-	-	-	49.0	-	-	-	11524	20100	7236	-
Workshop	20	15	13	13	6	132.3	298.6	51.8	629.0	35.7	37.0	32.5	63.5	18002	31000	11502	5425
a = 4	10	8	8	8	5	42.1	261.6	36.6	587.3	37.3	43.9	37.3	65.8	7772	13621	4847	2351
a = 8	10	7	5	5	1	235.5	357.8	76.0	-	33.9	26.0	24.8	-	28231	48378	18157	8499
BoxPushing	69	39	56	59	-	26.8	79.9	63.9	-	9.4	11.0	10.2	-	3075	5360	1932	-
a = 2	21	21	21	21	-	14.1	15.6	16.2	-	10.5	10.6	10.3	-	2099	3775	1261	-
a = 3	48	18	35	38	-	41.5	118.5	90.2	-	8.2	11.2	10.2	-	3502	6054	2226	-
l = 0	21	18	17	18	-	41.5	64.7	53.3	-	8.2	8.3	8.3	-	3373	5887	2116	-
l > 0	27	-	18	20	-	-	169.2	123.5	-	-	13.9	12.0	-	3602	6184	2312	-

- Unbounded compilation (∞) has the highest coverage.
- Compilation C = 2 is usually fast but cannot solve problems involving > 2 agents.

Daniel Furelos-Blanco and Anders Jonsson

Introduction	Background	Compilation	Experiments	Conclusions
Conclusions				

- Sound and complete method for compiling CMAPs into classical planning problems.
- The number of resulting actions is polynomial in the description of the CMAP.
- Competitive performance in CoDMAP-15 domains and domains requiring concurrency.

< ロ > < 同 > < 回 > < 回 >

Introduction	Background	Compilation	Experiments	Conclusions
<u> </u>				
Questions				

- Contact:
 - daniel.furelos@upf.edu
 - anders.jonsson@upf.edu
- Software: https://github.com/aig-upf/ universal-pddl-parser-multiagent

Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

Universitat Pompeu Fabra

A B > A B >

Introduction	Background	Compilation	Experiments	Conclusions				
	Boutilier, C. and Brafman Partial-Order Planning with J. Artif. Intell. Res. (JAIR	th Concurrent Inte	racting Actions.					
	 Brafman, R. I. and Zoran, U. (2014). Distributed Heuristic Forward Search with Interacting Actions. In Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014). 							
	Crosby, M., Jonsson, A., a A Single-Agent Approach In ECAI 2014 - 21st Euro August 2014, Prague, Cze of Intelligent Systems (PA	to Multiagent Pla pean Conference o ech Republic - Inclu	nning. n Artificial Intelligence uding Prestigious Appl	·				
	K_{autors} D L (2012)							

Kovacs, D. L. (2012).

A Multi-Agent Extension of PDDL3.1.

In Proceedings of the 3rd Workshop on the International Planning Competition (IPC), pages 19–27.

Daniel Furelos-Blanco and Anders Jonsson

Solving Concurrent Multiagent Planning using Classical Planning

(日) (四) (日) (日) (日)